منابع مشابه
Almost Hermitian structures on tangent bundles
In this article, we consider the almost Hermitian structure on TM induced by a pair of a metric and an affine connection on M . We find the conditions under which TM admits almost Kähler structures, Kähler structures and Einstein metrics, respectively. Moreover, we give two examples of Kähler-Einstein structures on TM . 2000 Mathematics Subject Classification: 53C55, 53C15, 53C25.
متن کاملA class of almost tangent structures in generalized geometry
A generalized almost tangent structure on the big tangent bundle T M associated to an almost tangent structure on M is considered and several features of it are studied with a special view towards integrability. Deformation under a βor a B-field transformation and the compatibility with a class of generalized Riemannian metrics are discussed. Also, a notion of tangentomorphism is introduced as ...
متن کاملNew structures on the tangent bundles and tangent sphere bundles
In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...
متن کاملUniqueness of Tangent Cones for 2-dimensional Almost Minimizing Currents
We consider 2-dimensional integer rectifiable currents which are almost area minimizing and show that their tangent cones are everywhere unique. Our argument unifies a few uniqueness theorems of the same flavor, which are all obtained by a suitable modification of White’s original theorem for area minimizing currents in the euclidean space. This note is also the first step in a regularity progr...
متن کاملLocal Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure
We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1992
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1992.128337